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Abstract

The field of dynamic graph visualization has received a lot of attention in recent years
as new use cases for the exploration of complex graphs have emerged. For example,
the representation of vast amounts of relational data as graphs have made a visual
analysis more challenging. Storyplans have been introduced as a tool for representing
such graphs in a sequential and understandable manner. While planar storyplans as
well as outerplanar and forest storyplans have been studied, there has been no research
that has gone into the direction of more powerful storyplans such as 1-planar storyplans.
This thesis explores the construction of 1-planar storyplans and delves into the specific
graph classes that admit these kinds of storyplans. We will extend the strict containment
of graph classes that admit storyplans established by Fiala, Firman, Liotta, Wol�, and
Zink (SOFSEM 2024) as we explore graphs that do admit 1-planar storyplans but fail
to do so for planar storyplans as well as graphs that do not admit 1-planar storyplans.
Furthermore, we generalize this graph containment for the graphs that admit p-planar
storyplans. We prove that the problem of deciding whether a given graph admits a
1-planar storyplan is NP-hard and we present a parameterized algorithm attempt with
respect to the vertex cover number. We conclude the thesis by stating the open problems
in this field. These findings not only enhance our understanding of graph representation
through storyplans but also inspire further research.
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Zusammenfassung

Das Feld der dynamischen Graphenvisualisierung hat in den letzten Jahren viel Auf-
merksamkeit erhalten, da neue Anwendungsfälle für die Erkundung komplexer Graphen
entstanden sind. Beispielsweise hat die Darstellung großer Mengen relationaler Daten als
Graphen eine visuelle Analyse anspruchsvoller gemacht. Storypläne wurden als Werk-
zeug zur Darstellung solcher Graphen in einer sequenziellen und verständlichen Weise
eingeführt. Während planare Storypläne sowie außenplanare und Wald-Storypläne un-
tersucht wurden, gibt es bisher keine Forschung, die sich in Richtung mächtigerer Sto-
rypläne wie 1-planare Storypläne bewegt hat. Diese Arbeit erforscht den Aufbau von
1-planaren Storyplänen und vertieft sich in die spezifischen Graphenklassen, die solche
Storypläne zulassen. Wir erweitern die strikte Hierarchie von Graphenklassen, die Sto-
rypläne zulassen, wie sie von Fiala, Firman, Liotta, Wol� und Zink (SOFSEM 2024)
etabliert wurde, indem wir Graphen erkunden, die 1-planare Storypläne zulassen, dies
jedoch nicht für planare Storypläne tun, sowie Graphen, die keine 1-planaren Storypläne
zulassen. Darüber hinaus verallgemeinern wir diese Hierarchie um Graphenklassen, die
p-planare Storypläne zulassen. Wir zeigen, dass das Problem zu entscheiden, ob ein ge-
gebener Graph einen 1-planaren Storyplan zulässt, NP-schwer ist, und präsentieren den
Versuch eines parametrisierten Algorithmus in Bezug auf die Knotenüberdeckungszahl.
Wir schließen die Arbeit ab, indem wir die o�enen Probleme in diesem Bereich darlegen.
Diese Erkenntnisse verbessern nicht nur unser Verständnis der Graphenrepräsentation
durch Storypläne, sondern inspirieren auch weitere Forschung.
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1 Introduction

There has been a lot of research surrounding approaches to the visual exploration of
large and complex graphs. Graph drawing by force-directed layouts can be thought of as
treating vertices as charged particles and edges as springs [FR91]. The layout evolves over
time until the system settles into a stable state. Useful for the visualization of large-scale
graphs is the hierarchical way of constructing graphs, where the visualization emphasizes
parent-child relationships within the graph [TT81]. There has also been a push towards
three-dimensional graph visualization techniques, which provide more depth and allow
for more complex visualizations, as described by Diehl and Görg [DG02]. In the realm
of dynamic graph visualization, there have emerged various time-dependent techniques
[HC14]. These kinds of visualization techniques are used to observe the evolution of
graphs over time.

One recent approach in the field of dynamic graph visualization is the use of storyplans
as proposed by Binucci, Di Giacomo, Lenhart, Liotta, Montecchiani, Nöllenburg, and
Symvonis [NS24]. Storyplans, namely outerplanar and forest storyplans, that are able
to visualize graphs in a more legible way have been introduced by Fiala, Firman, Liotta,
Wol�, and Zink [WZ23]. In this thesis, we will extend the existing storyplan problem
in the direction of more powerful storyplans in order to be able to construct such sto-
ryplans for larger classes of graphs. Specifically, we will investigate 1-planar storyplans,
the corresponding graph classes that allow such storyplans, and the complexity of the
decision problem of whether a given graph admits a 1-planar storyplan.

With an increasing number of vertices, a graph that is supposed to visualize certain
relations can grow very quickly in its number of edges. In fact, the technological ad-
vances of the last twenty years have generated lots of relational data that are typically
modeled as large graphs with thousands of vertices [LM19]. Therefore, the field of graph
visualization is constantly in search of beautiful and legible drawings of graphs. In a
legible graph drawing, the graph should be represented in a particular way, such that the
observer can read and extract the sought after information with ease, even in the largest
graphs. What constitutes a beautiful drawing of a graph is controversial. However,
it has been agreed upon that drawing graphs without edge crossings represents such a
beauty feature. This class of graphs, which do not allow edge crossings, is called the
class of planar graphs.

In this context, Binucci et al. [NS24] have specifically dealt with planar storyplans.
The introduction of storyplans goes hand in hand with the desire for a method that allows
us to get better at dynamically representing graphs. Intuitively, a planar storyplan can
be described as a sequence of drawings, called frames, such that each frame is a planar
subdrawing of the graph being explored. See Figure 1.1 for a planar storyplan of the
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Fig. 1.1: A total order of the vertices, which corresponds to a planar storyplan of the Petersen
graph.

Petersen graph.
A storyplan starts by exploring a selected vertex. This vertex remains visible until the

neighbors of the vertex have been visited. Once all the neighbors of the vertex have been
visited, the explored vertex disappears from the drawings of the storyplan and remains
disappeared until the end of the storyplan. This implies a natural order of the explored
vertices from 1 to n, where n is the number of vertices in the graph.

Furthermore, it should be noted that there are some properties that the frames of
a storyplan must fulfill. (i) A vertex should always have the same location over the
sequence of these frames, i.e., once a vertex becomes visible, it should be visible at
the exact same place in the next frames. (ii) An edge should always have the same
location over the sequence of these frames, i.e., once an edge becomes visible, it should
be visible at the exact same place in the next frames. A third property is now imposed
on the frames by the restriction of planar storyplans. (iii) Each frame should show a
planar drawing. This third property naturally depends on the type of storyplan being
investigated. For example, Fiala et al. [WZ23] have specifically studied outerplanar and
forest storyplans. These other types of storyplans di�er in their third property required
of the frames. In the case of outerplanar storyplans, the third property changes to
outerplanar drawings. In the case of forest storyplans, forest drawings are required.

In this thesis, we constrict property (iii) in another direction. We focus on 1-planar
drawings for the frames of a storyplan. A graph is called 1-planar, when each edge of
the graph is crossed at most one time. In other words, we allow a maximum of one
crossing per edge in our storyplan drawings. This naturally expands the size of the
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Fig. 1.2: A total order of the vertices that corresponds to a 1-planar storyplan of C3,3,3,3,3. Note
that the frames of steps 1-6 and steps 10-11 are not shown in this illustration.

graph universe that we can construct storyplans for. See Figure 1.2 for an example of
a 1-planar storyplan. Furthermore, we study the NP-hardness and highlight a di�culty
in obtaining a parameterized algorithm with respect to the vertex cover number of 1-

Planar Storyplan.

Definition 1.1. We call 1-Planar Storyplan the problem of deciding whether a
certain graph G admits a 1-planar storyplan (see Section 3.2).

There are various models for dynamic graph visualization in the literature. Of these,
the most relevant for our topic are the following ones: The works on planar storyplans
[NS24], outerplanar or forest storyplans [WZ23], graph stories [FP20], and streamed
graphs [LR19].

Fiala et al. [WZ23] have studied outerplanar and forest storyplans and have established
a chain of strict containment relations

Gforest ( Gouterpl ( Gplanar ( G

where Gforest, Gouterpl, and Gplanar denote the classes of graphs that admit forest, outer-
planar, and planar storyplans, respectively, by showing that
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Fig. 1.3: A total order of the vertices, which corresponds to an outerplanar storyplan of the
graph C2,2,2,2,2. Notice, that we move the vertex 8 to another position while it is
invisible.

• there is a —-free 6-regular graph (i.e., the C3,3,3,3,3) that does not admit a planar
storyplan;

• there is a K4-free 4-regular planar graph (i.e., the octahedron graph) that (trivially)
admits a planar storyplan, but does not admit an outerplanar storyplan; and

• there is a —-free 4-regular (nonplanar) graph (i.e., the C2,2,2,2,2) that admits an
outerplanar storyplan, but does not admit a forest storyplan.

We will extend this chain of strict containment relations to

Gplanar ( G1-planar ( G2-planar ( G3-planar ( · · · ( G

by showing that
• there is a —-free 6-regular graph that does admit a 1-planar storyplan, but does

not admit a planar storyplan;
• there is a graph that does not admit a 1-planar storyplan; and
• for every p > 1, the complete graph Kn, where n is such that Kn is p-planar (but

not (p ≠ 1)-planar), does not admit a (p ≠ 1)-planar storyplan. For p = 1, the
complete graph Kn, where n is such that Kn is p-planar, does not admit a planar
storyplan.

Additionally, Fiala et al. [WZ23] demonstrated that every bipartite graph admits a
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Fig. 1.4: A total order of the vertices, which corresponds to a forest storyplan of the bipartite
graph K3,3. Notice, that we have one partite set where we show all of the vertices and
another where we show vertices one-by-one.

forest storyplan (see Figure 1.4), the graph C2,2,2,2,2 admits an outerplanar storyplan
(see Figure 1.3), and all 2-trees admit outerplanar storyplans.

By reduction from One-In-Three 3SAT, Binucci et al. [NS24] have proved that
solving Planar Storyplan is NP-complete. Even when the total order of vertices
is given as input, as in Fixed Order Planar Storyplan, it remains NP-complete.
They have complemented this hardness with two parameterized algorithms, one in the
vertex cover number and one in the feedback edge set number. Furthermore, they have
proven that every partial 3-tree admits a planar storyplan, which can be computed in
linear time. Let G = (V, E) be a graph with n vertices, a vertex cover number Ÿ and a
feedback edge set of size Â. In dependency of the vertex cover number, deciding whether
G admits a planar storyplan, and computing one if any, can be done in O(22O(Ÿ) + n

2)
time. In dependency of the feedback edge set size, deciding whether G admits a planar
storyplan, and computing one if any, can be done in O(2O(ÂlogÂ) + n

2) time.
Borrazzo et al. [FP20] explored the concept of graph stories. A graph story is formed

by a graph G, a total order of its vertices · , and a positive integer W . The problem is to
find a sequence of drawings {Di}, i œ [n] where each Di contains all vertices v such that
i ≠ W < ·(v) Æ i, and the position of a vertex remains constant in all drawings to which
it belongs. This implies a fixed lifespan of vertices equal to W . A graph story (G, ·, W )
is associated with a sequence G1, G2, . . . , Gn+W ≠1. For any i œ {1, . . . , n + W ≠ 1}, the
graph Gi is the subgraph of G induced by the set of vertices {v œ V : i≠W < ·(v) Æ i}.
A drawing story for (G, ·, W ) is a sequence �1, �2, . . . , �n+W ≠1 of drawings such that
for every i œ {1, . . . , n + W ≠ 1}:

1. �i is a drawing of Gi,
2. a vertex v is drawn at the same position in all the drawings �i such that v œ Vi,

and
3. an edge (u, v) is represented by the same curve in all the drawings �i such that

(u, v) œ Ei.
Borrazzo et al. [FP20] proved that every graph story of a path or a tree can be drawn
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on a 2W ◊ 2W or a (8W + 1) ◊ (8W + 1) grid, respectively, while ensuring that all
drawings of the graph story are straight-line and planar. The presence of both a fixed
order and a fixed lifespan distinguishes this from the approach of Binucci et al. [NS24].
Unlimited lifespans, in particular, allow finding storyplans where all edges are drawn
in at least one step, while maintaining planarity to ensure readability even for large
layouts. Besides these model di�erences, Binucci et al. [NS24] focus on the complexity
of the decision problem rather than the area constraints.

Da Lozzo and Rutter [LR19] introduced streamed graphs. A streamed graph is a
stream of edges e1, . . . , em on a vertex set V . A streamed graph is W -stream planar
with respect to a positive integer window size W if there exists a sequence of planar
drawings �i of the graphs Gi = (V, {ej | i Æ j Æ i + W}) such that the common graph
G

i
fl = Gi fl Gi+1 is drawn the same in �i and in �i+1, for 1 Æ i < m ≠ W . Stream

Planarity with window size W asks whether a given streamed graph is W -stream
planar. Da Lozzo and Rutter [LR19] proved that there is a constant value for W such
that Stream Planarity is NP-complete. They also investigated a variant where a
backbone graph is given, and its edges must remain in the drawing at all times. For
this variant, they proved that the problem is NP-complete for all W Ø 2 and can be
solved in polynomial time when W = 1 or when the backbone graph is biconnected.
The di�erence between Stream Planarity and the problem described by Binucci et
al. [NS24], besides considering edges instead of vertices, is once again having a fixed
order and a fixed lifespan.
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2 Contribution and Overview

In the preceding chapter, we have introduced our thesis topic and highlighted why it
is relevant to the field of dynamic graph visualization. We have presented some of the
most common approaches to graph visualization and have described the relevant papers
that closely relate to the field of storyplans. A focus in the preceding section has been
the complexity of Planar Storyplan as shown by Binucci et al. [NS24], the related
concepts of graph stories [FP20] and streamed graphs [LR19], and a discussion on the
graph families that admit planar, outerplanar, or forest storyplans [WZ23].

We establish some preliminaries in Chapter 3. These are necessary to properly under-
stand the section on NP-hardness of 1-Planar Storyplan as well as the section on the
attempt of the parameterization with respect to the vertex cover number. We introduce
the reader into the broader topic and remind him or her of elementary definitions in
graph theory. Furthermore, we formally define 1-planar storyplans and highlight how
they are di�erent from planar, outerplanar, and forest storyplans.

We establish a chain of strict containment relations of graph classes that admit cer-
tain types of storyplans. In particular, we extend the chain of strict containment as
established by Fiala et al. [WZ23] for forest, outerplanar, and planar storyplans (see
Chapter 4). The graph class separation of G, Gplanar, Gouterplanar, and Gforest has already
been shown. We show that there is a further distinction between G, Gplanar, and G1-planar.
In particular, we focus on the —-free 6-regular graph C3,3,3,3,3 and complete graphs Kn,
where n Ø 5, as these have served as the examples belonging to G (i.e., the class of all
graphs) but not to Gplanar in the work of Fiala et al. [WZ23]. As a result, we extend the
already established chain of strict containment relations to

Gplanar ( G1-planar ( G2-planar ( G3-planar ( · · · ( G.

We prove the NP-completeness of 1-Planar Storyplan through reduction of Pos-

itive One-In-Three 3SAT in Section 5.1. We attempt to develop a parameterized
algorithm for 1-Planar Storyplan in the vertex cover number in Section 5.2 (see
Chapter 5). Our attempt to adapt the parameterized algorithm for Planar Story-

plan as introduced by Binucci et al. [NS24] sheds light on a key di�culty in developing
an analogous parameterization for 1-Planar Storyplan.

We conclude the thesis by discussing our findings and by stating the open problems
in this field (see Chapter 6).
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3 Preliminaries

This chapter contains the preliminaries that are necessary to understand in order to
follow the proofs in this thesis. We start o� with a section on elementary graph theoret-
ical definitions (see Section 3.1). Then, we follow that up with the definition of planar
storyplans while expanding that definition to include other types of storyplans, such as
outerplanar, forest, and most importantly 1-planar storyplans (see Section 3.2).

3.1 Elementary Graph Theory

We denote a graph G as G = (V, E), where V is the set of vertices and E is the set of
edges belonging to that graph, respectively. A drawing of G maps each vertex in V to
a distinct point in the plane and each edge in E to a Jordan arc between its endpoints.
A graph is called planar if there is a drawing of the graph in which no edges intersect,
except at a common endpoint. A regular graph is a graph where each vertex has the same
number of neighbors. We call a regular graph with vertices of degree k a k-regular graph.
For example, in a 4-regular graph, every vertex has exactly four neighbors. The regions
enclosed by the vertices of a graph (including the region outside the graph) are called
faces. If the face is enclosed by three vertices, we call the face a triangle. Throughout
this work, we denote a graph that has no triangles as —-free. When every face of a graph
is a triangle, we call the graph a triangulation. If a planar graph can be embedded into
the plane in such a way that all its vertices lie on the boundary of the outer face, it is
called outerplanar. A graph is called a forest if it is acyclic, i.e., it has no cycles. A cycle
is a path that can be traversed to return to the starting vertex without walking the same
path twice. A forest can also have isolated vertices or larger disconnected parts. This is
the only di�erence between a forest and a tree. We call a graph complete, when it is a
graph in which every vertex is connected to every other vertex. Complete graphs with
n vertices are denoted as Kn. For example, K5 is the complete graph with five vertices.
A graph is called bipartite if its vertices can be divided into two disjoint sets A and B,
such that there are no edges between vertices within the same set, but every vertex in
set A is connected to every vertex in set B. A graph is called p-planar if every edge has
at most p crossings. Especially, the case where p = 1, so called 1-planar graphs, is of
importance to our work.

12



3.2 P-Planar Storyplans

Our definition of a 1-planar storyplan is based on the definition of a planar storyplan as
described by Binucci et al. [NS24]. Note that we use [n] as a shorthand notation for the
set {1, . . . , n}.

Definition 3.1. A planar storyplan S = (·, (Di)iœ[n]) of G is a pair defined as follows.
The first element is a bijection · : V æ [n] that represents a total order of the vertices
of G. For a vertex v œ V , let iv = ·(v) and let jv = maxuœN [v] ·(u), where N [v] is
the set containing v and its neighbors. The interval [iv, jv] is the lifespan of v. We say
that v appears at step iv, is visible at step i for each i œ [iv, jv], and disappears at step
jv + 1. Note that a vertex disappears only when all its neighbors have appeared. The
second element of S is a sequence of drawings (Di)iœ[n], called frames of S, such that,
for i œ [n]: (i) Di is a drawing of the graph Gi induced by the vertices visible at step
i, (ii) Di is planar, (iii) the point representing a vertex v is the same over all drawings
that contain v, and (iv) the curve representing an edge e is the same over all drawings
that contain e.

For an outerplanar storyplan and a forest storyplan, we strengthen requirement (ii)
to Di being outerplanar and Di being a crossing-free drawing of a forest, respectively.
For a 1-planar storyplan, we weaken requirement (ii) to Di being 1-planar. Generally, a
p-planar storyplan demands of all the frames in the storyplan to be p-planar drawings.

Note that complete bipartite graphs always admit a 1-planar storyplan. In fact, it is
known that all bipartite graphs even admit forest storyplans [WZ23]. From the fact that
K3,3 is not planar, Binucci et al. [NS24] obtained following property.

Lemma 3.2. Let Ka,b = (A fi B, E) be a complete bipartite graph with a = |A|, b = |B|,
and 3 Æ b Æ a. Let S = (·, {Di}iœ[a+b]) be a planar storyplan of Ka,b. Exactly one of A

and B is such that all its vertices are visible at some i œ [a + b].

We use the result of Czap and Hudák [CH12] that K5,4 and K7,3 are not 1-planar and
show the property analogous to Lemma 3.2 for 1-planar storyplans.

Lemma 3.3. Let Ka,b = (A fi B, E) be a complete bipartite graph with a = |A|, b = |B|,
and a Ø 5, b Ø 4 (Case 1) or a Ø 7, b Ø 3 (Case 2). Let S = (·, {Di}iœ[a+b]) be
a 1-planar storyplan of Ka,b. Exactly one of A and B is such that all its vertices are
visible at some i œ [a + b].

Proof. First we show that there exists a step i œ [a + b] such that all vertices of either
A or B are visible. Recall that iv œ [n] is the step where a vertex v appears and jv œ [n]
with iv Æ jv is the step where the vertex v disappears. Let i be such that Di contains
the largest number t of vertices of A over all frames of S. If t = a, we are done. If
t < a, there exist two vertices u, v of A such that ju < iv. Note that all vertices in B are
adjacent to u, and hence they all appear at some step smaller than or equal to ju. On
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the other hand, since all vertices in B are adjacent to v as well, they cannot disappear
before iv + 1. It follows that all vertices of B are visible at step ju.

Now we show that if all vertices of one of the sets A or B, say A, are all visible at some
frame, then not all vertices of B are visible at any step j œ [a + b]. Consider the interval
I = [s, t] ™ [a + b] of maximal length such that the vertices of A are all visible. As we
have already shown, I is not empty. Let k be one of the steps that contain the largest
number h of vertices of B. Observe that, since I is maximal, one vertex of A appears
at s. Therefore, any vertex of B visible at step smaller than s is visible also at step s.
Similarly, by the maximality of I, one vertex of A disappears at step t + 1, therefore any
vertex of B visible at a step greater than t is visible also at step t. Consequently, we
can assume that k œ I, and we can conclude h Æ 3 (Case 1) and h Æ 2 (Case 2), since
the induced graphs K5,4 (Case 1) and K7,3 (Case 2) are not 1-planar and thus none of
these graphs can be in any frame of a 1-planar storyplan.

In view of Lemma 3.3, we have the following definition.

Definition 3.4. For a complete bipartite graph Ka,b with a Ø 5, b Ø 4 (Case 1) or
a Ø 7, b Ø 3 (Case 2) and a 1-planar storyplan S of Ka,b, we call fixed the partite set of
Ka,b whose vertices are all visible at some step of S, and flexible the other partite set.

14



4 Separation of Graph Classes

The graph class separation of G, Gplanar, Gouterplanar, and Gforest has already been shown
[WZ23]. In this chapter we show that there is a further distinction between G, Gplanar,
and G1-planar. More generally, we expand the class separation to p-planar storyplans. We
specifically focus on the —-free 6-regular graph C3,3,3,3,3 and complete graphs Kn, where
n Ø 5, as these have served as the examples belonging to G (i.e. the class of all graphs)
but not to Gplanar in the work of Fiala et al. [WZ23].

Theorem 4.1. For every p > 1, the complete graph Kn, where n is such that Kn is
p-planar (but not (p ≠ 1)-planar), does not admit a (p ≠ 1)-planar storyplan. For p = 1,
the complete graph Kn, where n is such that Kn is 1-planar, does not admit a planar
storyplan.

Proof. This follows directly from the fact that for a complete graph G = (V, E) every
vertex v œ V has an edge leading to every other vertex u ”= v œ V . In a storyplan, a
vertex cannot disappear until all its neighbors have appeared. Thus, a storyplan for a
complete graph will always have a frame that contains all of its vertices and edges. In
a p-planar storyplan, all of its frames must be p-planar drawings. If k < p, a complete
graph that is p-planar has a p-planar storyplan but not a k-planar storyplan. Otherwise,
there would be a frame in its storyplan which is p-planar and not k-planar. It follows
that a p-planar complete graph cannot admit a p ≠ 1-planar storyplan.

Theorem 4.2. The following statements hold:
1. There is a —-free 6-regular graph that admits a 1-planar storyplan but does not

admit a planar storyplan. This establishes Gplanar ( G1-planar.
2. There are complete graphs that do not admit 1-planar storyplans. This establishes

G1-planar ( G.
3. There are p-planar complete graphs that do not admit p ≠ 1-planar storyplans (see

Theorem 4.1). This establishes Gplanar ( G1-planar ( G2-planar ( G3-planar ( · · · ( G.

Proof. 1. As shown by Fiala et al. [WZ23], the graph C3,3,3,3,3 does not admit a planar
storyplan. We have shown that there is a total order of the vertices such that it
represents a 1-planar storyplan of C3,3,3,3,3 (see Figure 1.2 for an illustration).

2. The complete graph Kn is planar, if n Æ 4. Similarly, the complete graph Kn is
1-planar, if n Æ 6. The complete graphs K5 and K6 do admit 1-planar storyplans,
while not admitting planar storyplans (see Figure 4.1 and Figure 4.2 for a 1-planar
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Fig. 4.1: A 1-planar drawing of the complete graph K5.

Fig. 4.2: A 1-planar drawing of the complete graph K6.

drawing of the complete graph K5 and K6, respectively). According to Schumacher
[Sch86], a 1-planar graph has at most 4n≠8 edges. For n = 7, the upper bound for
the edge number is at 4 · 7 ≠ 8 = 20, while the complete graph K7 has

q
iÆ6 i = 21

edges. Hence, the complete graph K7 does not have a 1-planar drawing. It follows
from Theorem 4.1 that the complete graphs Kn, where n > 6, do not admit 1-
planar storyplans.

3. This follows directly from the proof of Theorem 4.1.
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5 1-Planar Storyplans

In this chapter, we prove the NP-hardness of 1-Planar Storyplan (see Section 5.1)
and show a parameterization attempt with respect to the vertex cover number (see Sec-
tion 5.2). Our proof is based on the analogous NP-hardness proof of Planar Story-

plan as described by Binucci et al. [NS24]. Note that we deviate from the NP-hardness
proof of Planar Storyplan in several ways. First, we reduce from Positive One-

In-Three 3SAT instead of One-In-Three 3SAT. This simplification improves the
readability of the NP-hardness proof. Furthermore, our gadget constructs di�er sub-
stantially from the ones used by Binucci et al. [NS24] in order to make the proof work
for 1-planar storyplans. By attempting to use a parameterized algorithm for 1-Planar

Storyplan that is based on the parameterized algorithm of Binucci et al. [NS24], we
have found a di�culty in adapting some of the reduction rules. Thus, we will describe
what has worked as well as discuss the main di�culty in fully adapting the parame-
terized algorithm for Planar Storyplan to a parameterized algorithm for 1-Planar

Storyplan.

5.1 NP-Hardness

In this section we prove that 1-Planar Storyplan is NP-complete through reduction
of Positive One-In-Three 3SAT. In Positive One-In-Three 3SAT we are given a
Boolean formula in conjunctive normal form with no negative literals and at most three
literals per clause. The objective is to decide whether there exists a variable assignment
such that in every clause exactly one literal is assigned to be true. Note that a literal
is either a positive or negative occurence of a variable. In the following, we will not
distinguish between variables and literals as we only observe positive literals in our
proof. One-In-Three 3SAT and the case where we allow only positive literals have
been proven to be NP-complete by Thomas Jerome Schaefer [Sch78] as a special case
of Schaefer’s dichotomy theorem, which asserts that any problem generalizing Boolean
satisfiability in a certain way is either in the class P or is NP-complete. Our NP-
completeness proof is based on the NP-completeness proof of Planar Storyplan by
Binucci et al. [NS24]. First, we describe the necessary gadgets that we need to construct
the reduction. Then, we conclude the proof by showing how we can draw a 1-planar
storyplan when given a solution of Positive One-In-Three 3SAT and how a solution
of Positive One-In-Three 3SAT can be obtained from a 1-planar storyplan.

Let „ be a 3SAT formula over N variables {xi}, i œ [N ] and M clauses {Cj}, j œ [M ].
We construct an instance of 1-Planar Storyplan, i.e., a graph G = (V, E), as follows
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(a) Variable gadget (b) Clause gadget

Bij

Aij

s2

s3

s1

Fig. 5.1: Illustration of the necessary gadgets.

(refer to Figure 5.1 for an illustration).
Variable gadget. See Figure 5.1 (a) for an illustration. Let xi be a variable occuring

in a clause Cj . Every variable xi is represented by the complete bipartite graph K5,5·pi
,

where pi is the number of occurences of xi in „. Let k œ [pi] and let Bik denote the five
vertices that correspond to the k

th occurence of the variable xi. We call the two sides of
the variable gadget the v-side Ai and Bik, respectively. A true (false) assignment of xi

will correspond to Ai being flexible (fixed) and all Bik being fixed (flexible) in a possible
storyplan of G.

Clause gadget. See Figure 5.1 (b) for an illustration. Each clause Cj is represented
by an extended K3,3,3 = (U1 fi U2 fi U3, F ). The extended K3,3,3 is obtained by drawing
the K3,3,3 and adding three vertices s1, s2, s3, such that these three vertices are pairwise
adjacent, and each sj is adjacent to all vertices in Uj for j œ [3]. We call s1, s2, s3 the
special vertices of the extended K3,3,3, while the other vertices are called simple vertices.
We call each of the three sets of vertices Uj fi sj a c-side of the clause gadget. Note that
the c-sides of the clause gadgets together with the v-sides Bik of the variables occuring
in that clause induce the graph K5,4.

Lemma 5.1. If the graph G admits a 1-planar storyplan, then „ admits a satisfying
assignment with exactly one true variable in each clause.

Proof. Let S = (·, {Di}iœ[n]) be a 1-planar storyplan of G. For each variable gadget, we
assign the value true (false) to xi if the v-side Ai is flexible (fixed) in S. For every variable
xi occuring in clause Cj we have the v-side Bik consisting of five vertices. The v-sides
Ai and Bik together form a K5,5, hence by Lemma 3.3 and Definition 3.4 the v-side Bik

is fixed (flexible). Note that all Bik, for k œ [pi], are then fixed (flexible). Similarly, the
v-side Bik and the c-side together form a K5,4, hence by Lemma 3.3 and Definition 3.4
the c-side is flexible (fixed). In other words, the value of xi propagates consistently
throughout all its occurences. For a schematization of the gadget construction, see
Figure 5.2. It remains to prove that, for any clause Cj of „, precisely one variable is
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Fig. 5.2: Schematization of the clause (x1 ‚ x2 ‚ x3).

true for the constructed truth value assignment of {xi}, i œ [N ]. We will show this by
proving that exactly one c-side of the clause gadget is flexible.

We first argue that not all c-sides can be fixed in S. For a contradiction, we assume
that they are. Let Dh be the frame of S in which the last simple vertex v of the clause
gadget appears. Observe that all other simple vertices are also visible at step h. Let
u ”= v be a simple vertex of the clause gadget. Either u is adjacent to v or in the same
c-side as v. Hence, since iu < h by assumption and since u cannot disappear until h + 1,
it follows that u is visible at step h. This implies that Dh contains a drawing of K3,3,3,
which is not 1-planar [CH12]. This contradicts our assumption of a 1-planar storyplan,
where every frame must be 1-planar.

Now we show that there cannot be more than one flexible c-side. If a c-side is flexible,
there can be no frame containing its three simple vertices. This follows from the fact
that the special vertex is adjacent to all three simple vertices on the same c-side. The
three simple vertices of the same c-side cannot disappear until the special vertex of that
c-side is visible. Thus, there would be a frame containing all four vertices together,
which is not possible since the c-side is flexible. On the other hand, when the last simple
vertex appears, its six neighbors in the other two c-sides of K3,3,3 are all visible, and
hence at least two c-sides must be fixed. Altogether, we have proved that at least two
c-sides are fixed and that at least one c-side is flexible. Therefore, in each clause gadget,
exactly one c-side is flexible, which corresponds to having exactly one true variable, as
desired.

Lemma 5.2. If the formula „ admits a satisfying assignment with exactly one true
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x1 = F x2 = T x3 = T x4 = F x5 = F

A1 A2 A3 A4 A5

Fig. 5.3: Proof of Lemma 5.2: Drawing the vertices of the fixed v-sides Ai. The v-sides Ai here
correspond to following formula: (x1 ‚ x2 ‚ x4) · (x5 ‚ x3 ‚ x1) · (x4 ‚ x3 ‚ x1).

x1 = F x2 = T x3 = T x4 = F x5 = F

A1 A2 A3 A4 A5

B11 B12 B13 B21 B31 B32 B41 B42 B51

Fig. 5.4: Proof of Lemma 5.2: Drawing the vertices of the fixed v-sides Bik. The v-sides Ai and
Bik here correspond to following formula: (x1 ‚x2 ‚x4)·(x5 ‚x3 ‚x1)·(x4 ‚x3 ‚x1).

variable in each clause, then graph G admits a 1-planar storyplan.

Proof. Given a satisfying assignment of „ with one true variable per clause, we can
compute a 1-planar storyplan S = (·, {Di}iœ[n]) of G. In the following, whenever we do
not specify the order of a group of vertices, any relative order is valid.

Consider a single variable gadget. If xi is false in the satisfying assignment, then we
let appear the five vertices of the v-side Ai (i.e., the v-side Ai is fixed). This procedure
is repeated for all variables xi in any order (see Figure 5.3). For ease of presentation, we
can imagine that all the drawn v-sides Ai are horizontally aligned, as shown in Figure 5.4.
Thus, for the v-sides Ai, it remains to draw the flexible v-sides Ai that represent a true
assignment to a variable xi.

If xi is true, then the v-sides Bik, for all k œ [pi], must be fixed because they form
bipartite graphs K5,5 with the v-side Ai, which is flexible. Therefore we let appear the
five vertices of all v-sides Bik. Similarly, if xi is false, then the v-sides Bik, for all k œ [pi],
must be flexible because they form bipartite graphs K5,5 with the v-side Ai, which is
fixed. Again, this procedure is repeated for all variables xi in any order. For ease of
presentation, we can imagine that all the drawn v-sides Bik are vertically arranged along
a horizontal line slightly above the v-sides Ai, as shown in Figure 5.4. Thus, also for
v-sides Bik, it remains to draw the flexible v-sides Bik (see Figure 5.5).

After having drawn the fixed v-sides, each flexible v-side can be drawn independently,
by letting appear and disappear its five vertices one by one (see Figure 5.6). To conclude
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x1 = F x2 = T x3 = T x4 = F x5 = F

B11 B12 B13 B21 B31 B32 B41 B42 B51

A1 A2 A3 A4 A5

Fig. 5.5: Proof of Lemma 5.2: Drawing the vertices of the flexible v-sides Bik. The v-sides Ai

and Bik here correspond to following formula: (x1‚x2‚x4)·(x5‚x3‚x1)·(x4‚x3‚x1).

x1 = F x3 = T x4 = F x5 = Fx2 = T

A1 A2 A3 A4 A5

B11 B12 B13 B21 B31 B32 B41 B42 B51

Fig. 5.6: Proof of Lemma 5.2: Drawing the vertices of the flexible v-sides Ai. The v-sides Ai and
Bik here correspond to following formula: (x1 ‚x2 ‚x4)·(x5 ‚x3 ‚x1)·(x4 ‚x3 ‚x1).

the proof, we first draw the clause gadgets alone, and then we show how to integrate in
the storyplan the flexible v-sides Bik and their connections, as well as the connections
of the fixed v-sides Bik with the corresponding c-side.

We begin by showing how to draw a single clause gadget, ignoring the connections
with the linked v-sides Bik (see Figure 5.7). We first let appear the three special vertices
of the clause gadget. Now we let appear the three simple vertices of a false variable (i.e.,
the fixed c-side). Right after, the special vertex connected to the three simple vertices
of the fixed c-side can disappear. Next, we let appear the three simple vertices of the
remaining false variable (i.e., the other fixed c-side in our clause gadget). Then, we draw
the vertices of the flexible c-side one by one in a 1-planar fashion. Once the last simple
vertex of the flexible c-side appears, all vertices of the clause can disappear. Hence, the
last c-side hasn’t appeared together but instead acted as a flexible c-side.

Figure 5.8 and Figure 5.9 illustrate the global strategy of drawing a 1-planar storyplan
by showing how to draw the gadgets that represent a true variable and how to draw the
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Fig. 5.7: Drawing a clause gadget. Note that we ignore the connections to the v-sides Bik and
that we have only drawn one vertex of the flexible c-side.

gadgets that represent a false variable, respectively. By repeating this procedure for
each clause we complete the 1-planar storyplan.

Theorem 5.3. It is NP-hard to decide whether a given graph admits a 1-planar storyplan
(1-Planar Storyplan is NP-hard).

Proof. Constructing the graph G from the formula „ clearly takes polynomial time, and
the correctness of the reduction follows from Lemma 5.1 and Lemma 5.2. This proves
that 1-Planar Storyplan is NP-hard.
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(x1 _ x2 _ x4) ^ (x5 _ x3 _ x1) ^ (x4 _ x3 _ x1)

A1 A2 A3 A4

B11 B12 B13 B21 B31 B32 B41 B42

x1 = F x2 = T x3 = T x4 = F

A1 A2 A3 A4

B11 B12 B13 B21 B31 B32 B41 B42

x1 = F x2 = T x3 = T x4 = F

A5

B51

x5 = F

Fig. 5.8: Proof of Lemma 5.2: Drawing of a true variable.
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(x1 _ x2 _ x4) ^ (x5 _ x3 _ x1) ^ (x4 _ x3 _ x1)

A1 A2 A3 A4

B11 B12 B13 B21 B31 B32 B41 B42

x1 = F x2 = T x3 = T x4 = F

A1 A2 A3 A4

B11 B12 B13 B21 B31 B32 B41 B42

x1 = F x2 = T x3 = T x4 = F

A5

B51

x5 = F

Fig. 5.9: Proof of Lemma 5.2: Drawing of a false variable.
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5.2 Parameterization Attempt

A vertex cover of a graph G = (V, E) is a set C ™ V such that every edge of E is
incident to a vertex in C, and the vertex cover number of G is the minimum size of a
vertex cover of G. Theorem 5.4 states the improvements in the time complexity that can
be achieved through parameterization in the vertex cover number obtained by Binucci
et al. [NS24]. We have attempted to adapt the parameterized algorithm to obtain an
analogous theorem for 1-planar storyplans. In this section we will discuss the successful
adaptations as well as the key di�culty in deriving an analogous parameterized algorithm
for 1-Planar Storyplan.

Theorem 5.4. Let G = (V, E) be a graph with n vertices and vertex cover number Ÿ.
Deciding whether G admits a planar storyplan, and computing one if any, can be done
in O(22O(Ÿ) + n

2) time.

Algorithm Description. Without loss of generality, we assume that the input graph
G does not contain isolated vertices, as they do not a�ect the existence of a 1-planar
storyplan. Isolated vertices can become visible at any step in the storyplan and instantly
disappear after that step because by definition they have no neighbors. Let C be a vertex
cover of size Ÿ of a graph G. For U ™ C, a vertex v œ V \ C is of type U if N(v) = U ,
where N(v) denotes the set of neighbors of v in G. This defines an equivalence relation
on V \ C and in particular partitions V \ C into at most

q
Ÿ

i=1
!

Ÿ

i

"
= 2Ÿ ≠ 1 < 2Ÿ distinct

types. Denote by VU the set of vertices of type U . We define three reduction rules.
R.1: If there exists a type U such that |U | = 1, then pick an arbitrary vertex x œ VU

and remove it from G.
R.2: If there exists a type U such that |U | = 2 and |VU | > 1, then pick an arbitrary

vertex x œ VU and remove it from G.
R.3: If there exists a type U such that |U | Ø 3 and |VU | > 7, then pick an arbitrary

vertex x œ VU and remove it from G.
Note that reduction rules R.1 and R.2 are equivalent to the first two reduction rules as

defined by Binucci et al. [NS24]. The third reduction rule has been adapted for 1-planar
storyplans as the bipartite graph that is induced by U and VU must not be 1-planar.
In the following, we will explain why reduction rule R.1 works and reduction rules R.2
and R.3 fail.

Lemma 5.5. (Attempt) Let G
Õ be the graph obtained from G by applying one of the

reduction rules R.1-R.3. Then G admits a 1-planar storyplan if and only if G
Õ does.

Proof. (Attempt) One direction is trivial, since when a graph admits a 1-planar story-
plan, then a subgraph of that graph also admits a 1-planar storyplan. Thus, we will
examine the nontrivial direction. Let’s assume that G

Õ admits a 1-planar storyplan
S

Õ = (· Õ
, {D

Õ}iœ[nÕ]), where n
Õ = n ≠ 1. We can distinguish between three cases based
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Fig. 5.10: Attempt of Lemma 5.5. Illustration for proof of Case A.

on the respective reduction rule applied to G. In each case, we denote by x the vertex
removed from G to obtain G

Õ.
Case A (R.1). See Figure 5.10 for an illustration. Let v be the neighbor of x in G,

whose lifespan according to ·
Õ is [iv, jv]. We compute · from ·

Õ by inserting x right after
v, consequently the lifespan of x in · is [iv + 1, iv + 1]. Similarly, we compute {Di}iœ[n]
from {D

Õ
i
}iœ[nÕ] as follows. For each i Æ iv, we set Di = D

Õ
i
. For i = iv + 1, we draw x in

D
Õ
iv

su�ciently close to v such that the edge xv can be drawn as a straight-line segment
that does not intersect any other edge. It is not di�cult to visualize that this segment
can always exist in such a manner. We then set Di to be equal to the resulting drawing.
Finally, for each i > iv + 1, we set Di = D

Õ
i≠1.

Case B Attempt (R.2). See Figure 5.12 for an illustration. By assumption G
Õ

contains at least one vertex v ”= x of type U , whose lifespan according to ·
Õ is [iv, jv].

We compute · from ·
Õ by inserting x right after v. Consequently, the lifespan of x in

· is [iv + 1, jv]. The vertex x will disappear after the second (i.e., the last) common
neighbor w

Õ of v and x has appeared. For each i Æ iv, we set Di = D
Õ
i
. For i = iv + 1,

we extend D
Õ
i

by drawing x su�ciently close to v and by drawing, for each neighbor w

of x, the edge xw such that it follows the curve representing the edge vw. Notice, that
this strategy works for planar storyplans but not for 1-planar storyplans. In the case
of planar storyplans, since vw is crossing-free, the same holds for xw. In the case of
1-planar storyplans, there is a possibility of vw being crossed at most once. Thus, the
edge that crosses vw also crosses xw except when v has disappeared before x appeared
which we cannot guarantee. See Figure 5.11 for an illustration of the problem. We can
neither guarantee that v disappears before x appears nor can we guarantee that the edge
that crosses vw disappears before we insert x.

Case C Attempt (R.3). Observe that, by assumption, the graph induced by the
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w

w0

v1 v2 v3 v4 v5

Fig. 5.11: Illustration of the di�culty in constructing the reduction rule as described in Case B.
We cannot insert the vertex x such that it follows the curves of one of the vertices vi

for i œ [|VU |]. There is no remaining edge to be crossed and we can neither guarantee
that w and w

Õ are still visible when x is inserted nor that any vi disappears before x

appears
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Fig. 5.12: Attempt of Lemma 5.5. Illustration for attempt of Case B.

vertices of U fi VU contains the complete bipartite graph Ka,b with a Ø 3 and b > 7,
whose partite sets are U and VU . Note that these complete bipartite graphs are not
1-planar as proved by Czap and Hudák [CH12]. Thus, according to Lemma 3.3, we
always have one partite set that is fixed and another that is flexible. We distinguish two
subcases Case C.1 and Case C.2 based on whether U is the fixed set or the flexible
set of Ka,b. Note that Case C.1 works as intended for 1-planar storyplans. In Case
C.2 we run into similar di�culties as described in Case B.

Case C.1 (R.3). First, suppose that U is the fixed set in the bipartite graph (see
Figure 5.13 for an illustration). Let I ™ [nÕ] be an interval in which all vertices of U are
visible. By assumption, G

Õ contains at least seven vertices vj ”= x of VU , with j œ [7].
Observe that the lifespan of each vertex vj intersects I, therefore there is at least one
vertex, say v1, whose lifespan does not intersect the interval. Otherwise, there would be
a frame containing K3,7. Let [i1, j1] be the lifespan of v1. Observe that j1 is in I. We
compute · from ·

Õ by inserting x right after v1 disappears, such that its lifespan in ·

is [j1 + 1, j1 + 1]. For each i Æ j1, we set Di = D
Õ
i
. For i = j1 + 1, we take D

Õ
j1 and

replace the drawing of v1 with the drawing of x. Namely, we place x on the same point
of v1 and we draw each curve xw by following the curve v1w. Since v1w crosses any
other edge at most once and disappears before x appears, the same holds for xw. The
resulting drawing is Di. Finally, for each i > j1 + 1, we set Di = D

Õ
i≠1.

Case C.2 Attempt (R.3). Now suppose that VU is the fixed set (see Figure 5.14
for an illustration). Let [s, t] ™ [nÕ] be the maximal interval in which all vertices of VU

in G
Õ are visible. Let v ”= x be the vertex of VU such that ·

Õ(v) = s (i.e., the first vertex
of VU that appears). We compute · from ·

Õ by inserting x right next to v such that its
lifespan in · is [s + 1, t + 1]. For each i Æ s, we set Di = D

Õ
i
. For i = s + 1, we extend
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Fig. 5.13: Attempt of Lemma 5.5. Illustration for proof of Case C.1 (i.e., U is the fixed set).

D
Õ
i

by drawing x su�ciently close to v and by drawing, for each neighbor w of x, the
edge xw such that it follows the curve representing the edge vw. In the case of 1-planar
storyplans, there is a possibility of vw being crossed at most once. Once again, we face
the same challenge as described in Case B and illustrated in Figure 5.11. We cannot set
Di to be equal to the resulting drawing. Similarly, for each i œ [s + 2, t + 1], we cannot
extend (if needed) the frame D

Õ
i≠1 by drawing any edge xw in a 1-planar manner. For

each i > t + 1, we set Di = D
Õ
i≠1.

With the help of Lemma 5.5 we attempt to prove Theorem 5.4 for 1-planar storyplans.

Proof. (Attempt) According to Chen, Kanj, and Xia [KX10], we can determine the vertex
cover number Ÿ of G and compute a vertex cover C of size Ÿ in time O(2Ÿ + Ÿ · n). To
construct a kernel G

ı from G of size O(2Ÿ), we first classify each vertex of G based on
its type. Then, we apply our reduction rules R.1, R.2, and R.3 exhaustively. Thus,
constructing G

ı can be done in O(2Ÿ + Ÿ · n) time, since O(2Ÿ) is the number of types
and Ÿ · n is the maximum number of edges of G. Also, G

ı contains n
ı Æ 7 · 2Ÿ

< 2Ÿ+3

vertices.
From Lemma 5.5 we attempt to conclude that G admits a 1-planar storyplan if and

only if G
ı does. To establish whether G

ı admits a 1-planar storyplan we proceed as fol-
lows: (1) We guess a total order ·

ı of G
ı; (2) For i = 1, we guess all 1-planar embeddings

of the graph induced by the vertices visible at step i; (3) For each i > 1, we consider the
embeddings computed at the previous step i ≠ 1, we remove from them the vertices (if
any) that disappear at step i, we remove possible duplicates, and we try to exhaustively
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Fig. 5.14: Attempt of Lemma 5.5. Illustration for attempt of Case C.2 (i.e., VU is the fixed
set).

extend each of the resulting 1-planar embeddings by inserting the vertex that appears
at step i. The algorithm halts if the set of 1-planar embeddings becomes empty. It is
readily seen that G

ı admits a 1-planar storyplan if and only if the algorithm terminates
at step n

ı with at least one 1-planar embedding. Concerning the time complexity, step
(1) takes O(2Ÿ+3!) time. Since G

ı contains O(2O(Ÿ)) vertices and edges, the number
of possible 1-planar embeddings are O((2O(Ÿ))(2O(Ÿ))) = O((22O(logŸ)·2O(Ÿ))) = O(22O(Ÿ)).
Hence step (2) takes O(22O(Ÿ)) time and step (3) takes O(22O(Ÿ)) · O(22O(Ÿ)) = O(22O(Ÿ))
time. Starting from the 1-planar storyplan of G

ı, we can reinsert the missing O(n)
vertices each in O(n) time, as detailed in Lemma 5.5.
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6 Conclusion

In this thesis, we have introduced 1-planar storyplans and established a distinction
between the various graph classes that admit p-planar storyplans. This allows for a
broader range of graphs to be representable by some kind of storyplan, thereby enhancing
the utility of storyplans in dynamic graph visualization. The chain of strict containment
relations between graph classes that allow planar, 1-planar, 2-planar, ..., and n-planar
storyplans has been established. We devised a total order of the vertices to show that
C3,3,3,3,3 does not admit planar storyplans but does admit 1-planar storyplans. We
showed that not every graph admits a 1-planar storyplan. Specifically, we have revealed
that only complete graphs that are p-planar admit k-planar storyplans (where k Ø
p). Thus, we were able to extend the strict containment of graph classes, that allow
storyplans, to include p-planar storyplans.

Furthermore, we have formally introduced 1-Planar Storyplan and have proved
the NP-hardness through reduction of Positive One-In-Three 3SAT. This has built
on prior work done by Binucci et al. [NS24] and is laying the groundwork for further
research in the hardness of storyplan-related problems.

Finally, we highlighted the di�culties that arise when attempting to adapt the param-
eterization of Planar Storyplan in the vertex cover number [NS24] to an analogous
parameterization of 1-Planar Storyplan in the vertex cover number. This result
paves the way for further parameterization attempts (see Chapter 7 to get a perspective
on what research can follow this thesis).

In the broader context, this research significantly contributes to the theoretical foun-
dation of dynamic graph visualization. Our work expands the universe of graphs that
can be visualized using storyplans, underlining the potential for alternative visualization
techniques. By providing the NP-hardness proof for the decision problem surrounding
1-planar storyplans, this thesis not only advances our current understanding of storyplan
decision problems but also points towards avenues for future research and innovation in
the graph visualization domain.
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7 Open Problems

As storyplans have only recently been introduced, the field surrounding storyplans still
has a plethora of problems yet to be explored. The following are the open problems that
we find are the most suitable for further studies in the domain of storyplans for graph
visualization.

1. An intuitive next step in this area of research would be to develop a parameterized
algorithm for 1-Planar Storyplan in the vertex cover number. This thesis has
already highlighted some of the di�culties that arise when using the approach of
Binucci et al. [NS24] for 1-Planar Storyplan. Other approaches may be more
suitable for this kind of problem.

2. Further research could answer whether every 4-tree admits a 1-planar storyplan.
3. While we have shown the complexity of 1-Planar Storyplan, future work could

examine the complexity of 1-Planar Storyplan Fixed Order, where the total
order of the vertices · : V æ [n] is already given as input of the problem.

4. In the field of storyplans, the complexity of decision problems have been studied.
On the other hand, area constraint problems for the construction of certain kinds
of storyplans have not been studied yet.

5. It would be interesting to attempt the parameterization of 1-Planar Storyplan

in the feedback edge set number and other parameters.
6. While 1-planar storyplans have been the focus of this thesis, there is room for

exploration into other types of storyplans. For instance, investigating storyplans
that only allow right-angle crossings or other specific constraints can open up new
possibilities.
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